Unifont

Paul Hardy

This tutorial describes Unifont, a bitmap-based font covering the Unicode Basic Multilingual
Plane and beyond, and its utility programs.
Copyright (©) 2008-2014 Paul Hardy
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts.

Table of Contents

1 Introduction................, 1
2 Tutorial......... 2
2.1 Unicode. ..o 2
2.2 Unifont Structure 2
2.3 Hex File Format ... 2
2.4 Using Graphical Tools........ ..., 3
2.5 Using Hexdraw 6
2.6 Checking Coverageouuuuuiteii e 7
2.7 Custom Builds........ ..o 8
2.8 Viewing a Unifont File Interactively.............. 9
2.9 Seeing the Big Picture (Literally!)...............oooiii... 9
2.10 Combining Circles 10
2.11 Installing Fonts on GNU/Linuxoooooaia... 10
2.12 Creating a Brand New Font........... 11
2.13 Updates to Unicode.........cocoviiiiiiiiiiiiii i, 11
3 Reference........... 13
3.1 bdfimplode.o 13
3.1.1 bdfimplode NAME 13
3.1.2 bdfimplode SYNOPSIS. 13
3.1.3 bdfimplode DESCRIPTION, 13
3.1.4 bdfimplode FILES 13
3.1.5 bdfimplode SEE ALSO....... ... i 13
3.1.6 bdfimplode AUTHOR. i, 13
3.1.7 bdfimplode LICENSE i, 13
3.1.8 bdfimplode BUGS. i 13
3.2 hex2bdf.. 13
321 hex2bdf NAME 13
3.2.2 hex2bdf SYNOPSIS oo 13
3.2.3 hex2bdf DESCRIPTION 14
3.2.4 hex2bdf OPTIONS. ... 14
325 hex2bdf EXAMPLE 14
3.2.6 hex2bdf FILES. ... e 14
3.2.7 hex2bdf SEE ALSOo 14
3.2.8 hex2bdf AUTHOR 14
329 hex2bdf LICENSE 14
3.2.10 hex2bdf BUGS. 14
3.3 hex2sfd ... 15
3.3.1 hex2sfd NAME. 15
3.3.2 hex2sfd SYNOPSIS ... 15

3.3.3 hex2sfd DESCRIPTION. i, 15

3.34 hex2sfd FILESo e 15
3.3.5 hex2sfd SEE ALSO 15
3.3.6 hex2sfd AUTHOR. 15
3.3.7 hex2sfd LICENSEo 15
3.3.8 hex2sfd BUGS ... 15
3.4 hexbraille....... ..o 15
3.4.1 hexbraille NAME 15
3.4.2 hexbraille SYNOPSIS 15
3.4.3 hexbraille DESCRIPTION 16
3.4.4 hexbraille FILES 16
3.4.5 hexbraille SEE ALSO ... 16
3.4.6 hexbraille AUTHOR, 16
3.4.7 hexbraille LICENSE. o 16
3.4.8 hexbraille BUGS i 16
3.5 hexdraw ... 16
3.5.1 hexdraw NAME e 16
3.5.2 hexdraw SYNOPSIS ... 16
3.5.3 hexdraw DESCRIPTION........ i, 16
3.5.4 hexdraw FILES 16
3.5.5 hexdraw SEE ALSO....... i, 17
3.5.6 hexdraw AUTHOR....... ... 17
3.5.7 hexdraw LICENSE 17
3.5.8 hexdraw BUGS ... 17
3.6 hexkinya...........coiiiiiiii 17
3.6.1 hexkinya NAME 17
3.6.2 hexkinya SYNOPSIS ... 17
3.6.3 hexkinya DESCRIPTION 17
3.6.4 hexkinya FILES. 17
3.6.5 hexkinya SEE ALSO i, 17
3.6.6 hexkinya AUTHOR. i 17
3.6.7 hexkinya LICENSE o i, 18
3.6.8 hexkinya BUGS i 18
3.7 NEXINETZE . .o ettt 18
3.7.1 hexmerge NAME. 18
3.7.2 hexmerge SYNOPSIS oo i 18
3.7.3 hexmerge DESCRIPTION........ ..., 18
3.7.4 hexmerge FILES i 18
3.7.5 hexmerge SEE ALSO i 18
3.7.6 hexmerge AUTHOR...... i, 18
3.7.7 hexmerge LICENSE i, 18
3.7.8 hexmerge BUGS i 18
3.8 johab2ucs2. 19
3.8.1 johab2ucs2 NAME i, 19
3.8.2 johab2ucs2 SYNOPSIS.... ..., 19
3.8.3 johab2ucs2 DESCRIPTIONo, 19
3.8.4 johab2ucs2 FILES........ i i, 19
3.8.5 johab2ucs2 SEE ALSO 19
3.8.6 johab2ucs2 AUTHOR ..., 19

ii

3.8.7 johab2ucs2 LICENSE 19
3.8.8 johab2ucs2 BUGS...... i 19
3.9 unibdf2hex. 19
3.9.1 unibdf2hex NAME 19
3.9.2 unibdf2hex SYNOPSIS. ... 19
3.9.3 unibdf2hex DESCRIPTION ... 20
3.9.4 unibdf2hex FILES...... ... it 20
3.9.5 unibdf2hex SEE ALSO, 20
3.9.6 unibdf2hex AUTHOR..... ... i 20
3.9.7 unibdf2hex LICENSE 20
3.9.8 unibdf2hex BUGS 20
3.10 unibmp2hex 20
3.10.1 unibmp2hex NAME...... 20
3.10.2 unibmp2hex SYNOPSIS. oo 20
3.10.3 unibmp2hex DESCRIPTION........... ...t 20
3.10.4 unibmp2hex OPTIONS 21
3.10.5 unibmp2hex FILES i, 21
3.10.6 unibmp2hex SEE ALSO.......... ..., 21
3.10.7 unibmp2hex AUTHOR.......... 21
3.10.8 unibmp2hex LICENSE 21
3.10.9 unibmp2hex BUGS ... i 21
3.11 UNICOVETAZEttt 22
3.11.1 unicoverage NAME i i 22
3.11.2 unicoverage SYNOPSIS i 22
3.11.3 unicoverage DESCRIPTION 22
3.11.4 unicoverage OPTIONS i iiiiiin. 22
3.11.5 unicoverage FILES o i 22
3.11.6 unicoverage SEE ALSO i 22
3.11.7 unicoverage AUTHOR 22
3.11.8 unicoverage LICENSE.o il 22
3.11.9 unicoverage BUGS i 22
312 unidup. .o 22
3.12.1 unidup NAME 22
3.12.2 unidup SYNOPSIS. ... 23
3.12.3 unidup DESCRIPTION 23
3.12.4 unidup FILES 23
3.12.5 unidup SEE ALSO ... o 23
3.12.6 unidup AUTHOR....... ..o 23
3.12.7 unidup LICENSE 23
3.12.8 unidup BUGS...... ... 23
3.13 unifont-viewer 23
3.13.1 unifont-viewer NAME 23
3.13.2 unifont-viewer SYNOPSIS........... iia. 23
3.13.3 unifont-viewer DESCRIPTION 23
3.13.4 unifont-viewer FILES 24
3.13.5 unifont-viewer SEE ALSO........., 24
3.13.6 unifont-viewer AUTHOR................ 24
3.13.7 unifont-viewer LICENSE 24

iii

3.13.8 unifont-viewer BUGS........ il 24
3.14 unifontchojung........ ..o i 24
3.14.1 unifontchojung NAME oo, 24
3.14.2 unifontchojung SYNOPSIS.......t 24
3.14.3 unifontchojung DESCRIPTION 24
3.14.4 unifontchojung FILES.......... i, 24
3.14.5 unifontchojung SEE ALSOol 25
3.14.6 unifontchojung AUTHOR. 25
3.14.7 unifontchojung LICENSE it 25
3.14.8 unifontchojung BUGS.......... it 25
3.15 unifontkSX . ..o 25
3.15.1 unifontksx NAME 25
3.15.2 unifontksx SYNOPSIS ... i, 25
3.15.3 unifontksx DESCRIPTION........... 25
3.15.4 unifontksx FILES 25
3.15.5 unifontksx SEE ALSO 25
3.15.6 unifontksx AUTHOR...........cc i 25
3.15.7 unifontksx LICENSE o i 26
3.15.8 unifontksx BUGS o i 26
3.16 unifontpic.o 26
3.16.1 unifontpic NAME 26
3.16.2 unifontpic SYNOPSIS. 26
3.16.3 unifontpic DESCRIPTIONo it 26
3.16.4 unifontpic OPTIONS. oo i 26
3.16.5 unifontpic EXAMPLES 26
3.16.6 unifontpic FILES 27
3.16.7 unifontpic SEE ALSO...... 27
3.16.8 wunifontpic AUTHOR. ... i 27
3.16.9 unifontpic LICENSE 27
3.16.10 wunifontpic BUGS. i 27
3.17 unigencircles. ... 27
3.17.1 unigencircles NAME 27
3.17.2 unigencircles SYNOPSIS ... i, 27
3.17.3 unigencircles DESCRIPTION 27
3.17.4 unigencircles EXAMPLE 28
3.17.5 unigencircles FILES...... ot 28
3.17.6 unigencircles SEE ALSO 28
3.17.7 unigencircles AUTHOR, 28
3.17.8 unigencircles LICENSE o i, 28
3.17.9 unigencircles BUGS i 28
3.18 unigenwidth ... 28
3.18.1 wunigenwidth NAME i, 28
3.18.2 unigenwidth SYNOPSIS....... .o i 28
3.18.3 unigenwidth DESCRIPTIONt 28
3.18.4 unigenwidth EXAMPLE 28
3.18.5 unigenwidth FILES oot 29
3.18.6 wunigenwidth SEE ALSO.......... i, 29
3.18.7 wunigenwidth AUTHOR........., 29

iv

3.18.8 wunigenwidth LICENSE i .. 29
3.18.9 wunigenwidth BUGS i 29
3.19 unihex2bmp 29
3.19.1 wunihex2bmp NAME 29
3.19.2 unihex2bmp SYNOPSIS.o 29
3.19.3 unihex2bmp DESCRIPTIONcooiia... 29
3.19.4 unihex2bmp OPTIONS i, 29
3.19.5 unihex2bmp FILES 30
3.19.6 unihex2bmp SEE ALSO.......... i, 30
3.19.7 unihex2bmp AUTHOR.......... 30
3.19.8 unihex2bmp LICENSE i, 30
3.19.9 unihex2bmp BUGS ... 30
3.20 unihex2png 30
3.20.1 wunihex2png NAME. 30
3.20.2 unihex2png SYNOPSIS o 30
3.20.3 unihex2png DESCRIPTION.ot 30
3.20.4 unihex2png OPTIONS i 31
3.20.5 unihex2png EXAMPLE 31
3.20.6 unihex2png FILESo i 31
3.20.7 unihex2png SEE ALSOo i 31
3.20.8 unihex2png AUTHOR, 31
3.20.9 unihex2png LICENSE.o i 31
3.20.10 unihex2png BUGS ... o 32
3.21 wunihexfill ..o 32
3.21.1 wunihexfill NAME 32
3.21.2 unihexfill SYNOPSIS. 32
3.21.3 unihexfill DESCRIPTION......... 32
3.21.4 unihexfill OPTIONS o, 32
3.21.5 unihexfill FILES ... oo 32
3.21.6 unihexfill EXAMPLE 32
3.21.7 unihexfill SEE ALSO.......... 32
3.21.8 unihexfill AUTHOR......... .. i 33
3.21.9 unihexfill LICENSE oo i, 33
3.21.10 unihexfill BUGS ... 33
3.22 unihexgen 33
3.22.1 unihexgen NAME i i 33
3.22.2 unihexgen SYNOPSIS. i 33
3.22.3 unihexgen DESCRIPTION, 33
3.22.4 unihexgen OPTIONS i i 33
3.22.5 unihexgen FILES i i 33
3.22.6 unihexgen EXAMPLE 33
3.22.7 unihexgen SEE ALSO....... .. i 34
3.22.8 unihexgen AUTHOR 34
3.22.9 wunihexgen LICENSE i 34
3.22.10 unihexgen BUGS i 34
3.23 UnIpagecount 34
3.23.1 unipagecount NAME, 34
3.23.2 unipagecount SYNOPSIS. il 34

3.23.3 unipagecount DESCRIPTION........................... 34
3.23.4 unipagecount OPTIONS it 34
3.23.5 unipagecount FILES oL 35
3.23.6 unipagecount SEE ALSO.........o, 35
3.23.7 unipagecount AUTHOR............, 35
3.23.8 unipagecount LICENSE it 35
3.23.9 unipagecount BUGS i 35
3.24 UnIpNg2Rex 35
3.24.1 wunipng2hex NAME. 35
3.24.2 unipng2hex SYNOPSISo i 35
3.24.3 unipng2hex DESCRIPTION...........o il 35
3.24.4 unipng2hex OPTIONS i 36
3.24.5 unipng2hex EXAMPLE 36
3.24.6 unipng2hex FILES i i 36
3.24.7 unipng2hex SEE ALSO i 36
3.24.8 unipng2hex AUTHOR i, 36
3.24.9 unipng2hex LICENSE. i, 36

3.24.10 unipng2hex BUGS ... 36

vi

Chapter 1: Introduction 1

1 Introduction

This document describes the process of using the GNU Unifont utilities to create a font.
The steps described in the "Using Graphical Tools" section in the "Tutorial" chapter are
more or less the steps that I (Paul Hardy) followed to add thousands of glyphs to GNU
Unifont, except that I didn’t have the luxury of just typing make to make a new font while
adding those glyphs in the beginning.

I streamlined the font build process after I was done drawing the Unicode 5.1 glyphs.

I know that plain ASCII text is *so* last millennium, especially for a package related to
Unicode. Yet ASCII can be read with anything; hence this format.

If you have questions, please email unifoundry@unifoundry.com. You can check
for the latest Unifont news at http://savannah.gnu.org/projects/unifont
and http://unifoundry.com. You can also submit a bug report through the
http://savannah.gnu.org/projects/unifont page.

DISCLAIMER: Donald Knuth warned in his Metafont book that if someone started design-
ing type, they would never again be able to look at a page of text normally and just read its
content. There is a point of no return beyond which a serious font designer begins looking
at how individual letters in a font on a page are drawn, and how they might be improved.
Be warned!

— Paul Hardy (unifoundry@unifoundry.com) 2008, 2013

Chapter 2: Tutorial 2

2 Tutorial

This chapter provides a step-by-step tutorial on using the Unifont utility programs to modify
a font in the GNU Unifont format.

2.1 Unicode

Unicode is an international standard to encode all the world’s scripts with one universal
scheme. Unicode is the default encoding for web pages and is gaining popularity in many
other applications. To learn more about Unicode, look at code charts, and see the latest
developments, check out

http://unicode.org

Unifont follows the Unicode encoding scheme. Unicode defines the numeric value of a
character, but does not define one particular font. There can be (and are) many fonts that
support a subset of Unicode characters.

In 1998, Roman Czyborra observed that there was still no font, free or commercial, with
complete Unicode coverage. He envisioned a low-quality bitmapped font as an easy way to
produce a font that covered much of the Unicode standard.

2.2 Unifont Structure

GNU Unifont is a bitmapped pixel font, which is also converted to an outline TrueType
font. Roman Czyborra began this font in 1998 with a goal of having one glyph rendered
for each visible character in the Unicode Basic Multilingual Plane (Plane 0, the first 65,536
characters). His original writing on this is at http://czyborra.com/unifont/.

(Note that the term "character" is used very loosely here for simplicity; the Unicode Stan-
dard has a stricter definition of what constitutes a character.)

The font is dual-width. Each character is 16 pixels tall, and either 8 or 16 pixels wide.
The characters are stored in a unique .hex file format invented by Roman Czyborra as a
convenient way of giving each character exactly a one line specification. Conversion between
this .hex format and BDF font format is trivial.

2.3 Hex File Format

By convention, files containing the Unifont native font format have the extension ".hex".
Their format is extremely simple, consisting of two fields separated with a colon (":") and
ending with a newline.

The first field is the Unicode code point, in hexadecimal. For all Plane 0 code points, this is
a four digit hexadecimal number. Hexadecimal digits are (in order) 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, and F. The Unicode Standard uses a hexadecimal number to assign each
character a location. These locations are called "code points" and their range is 0 through
10FFFF, inclusive.

The range 0000 through FFFF, inclusive, is called the Basic Multilingual Plane (BMP), or
Plane 0. This plane contains glyphs for most of the world’s modern writing scripts.
Unifont utilities support glyphs across the entire Unicode range. The current distribution
includes glyphs for Unicode’s Plane 0, Plane 1 (the Supplemental Multilingual Plane, or
SMP), and others. Coverage of the SMP is only partial.

Chapter 2: Tutorial 3

The first field in a .hex file should be either four digits long for the Basic Multilingual
Plane, or six digits long for higher Unicode planes, following the convention of the Unicode
Standard.

The second field is a string of hexadecimal digits. There are 32 digits for a character that
is 8 pixels wide, and 64 digits for a character that is 16 pixels wide.

The good news is you don’t have to worry about these long digit strings. Roman Czyborra
wrote a utility, hexdraw, to convert .hex fonts to a form that can be edited with a plain
text editor, then converted back into .hex format.

Paul Hardy wrote two utilities to do the same thing except with bitmapped graphics images
for editing with a graphics editor: unihex2bmp converts a block of 256 characters into a
graphics file, and unibmp2hex converts such a graphics file back into .hex format. These
bitmaps display the 256 characters in a block arranged in a 16 by 16 character grid. The
graphics editor must maintain the image as a monochrome (black and white) file, with one
bit per pixel. After conversion from a .bmp file back to a .hex file, the next step is conversion
to a BDF font file. A BDF file can only encode a pixel being on or off (i.e., black or white
only with no intermediate shades of gray).

Andrew Miller later converted unihex2bmp and unibmp2hex to Perl, then transformed them

into unihex2png and unipng2hex, respectively. These programs convert Unifont .hex files
to and from Portable Network Graphics files.

These programs will probably handle glyphs beyond the BMP properly, but that capa-
bility is considered experimental, as the focus was to cover the BMP. The unihex2png
and unipng2hex programs handle the full Unicode code point range of 0x000000 through
0x10FFFF. The unihex2bmp and unibmp2hex programs support the full 32-bit unsigned
integer range of 0x00000000 through OxFFFFFFFF, but have not been tested extensively
beyond the Unicode BMP. The range of the C programs might be truncated in the future
to only cover to 0x10FFFF, the limit of the Unicode code point space.

The latest release of the hexdraw program works correctly with .hex files having code points
in the full Unicode range of U+0000 through U+10FFFF.

2.4 Using Graphical Tools

Let’s look at an example. Suppose you want to modify the Coptic letters in the range
U+2C80..U+2CFF ("U+" is Unicode shorthand). These letters are in the upper half of the
block U+2C00..U+2CFF. The Unicode utilities in this package refer to this as "page" 2C.
("Page" is not a Unicode term — it is just a term unique to this package to refer to a block
of 256 code points/characters).

The steps to follow will be:
1. Convert .hex version of the page 2C range as a 16 by 16 bitmapped grid.

2. Modify the bitmap in any graphics editor, being careful to re-save it as a Windows
Bitmap (.bmp) or Wireless Bitmap file when finished.

Convert the modified bitmap back into a .hex font file.
Merge the results with the original unifont.hex file (or whatever its name might be).

Run unidup on the resulting file to guard against duplicate character definitions.

AR AN ol

Create the new bitmapped version of the font.

Chapter 2: Tutorial 4

7. Check the compiled font for duplicates.
8. If there are duplicates, remove them and go back to Step 5.

9. Create the new TrueType version or other versions of the font.

If the script has combining characters (such as accent glyphs), also add their code points
to the proper *combining.txt file in the directory for the corresponding Unicode plane.
That way, when the font is converted to TrueType those glyphs will have zero space. For
a script with combining characters, all glyphs that can appear with combining characters
must have the same width so that the combining characters will be properly positioned.
Step 1: Convert the .hex range into a bitmap grid. Assuming our font file is named
unifont.hex, type

unihex2bmp -p2C < unifont.hex > uni2C.bmp
Step 2: Modify uni2C.bmp with your favorite graphics editor. Note that whatever graphics
editor you use must preserve the file as a black and white bitmap (monochrome), with one
bit per pixel. During editing, you can draw guidelines outside the actual 16x16 font pixel
area; they will be ignored when converting back into .hex format. You can also erase the
grid borders between code points on purpose or by accident, and it will have no effect on the
generated .hex file. Just don’t erase the code point numbers on the outer edges of the grid.
The conversion from .bmp back to .hex only looks at the "U+0000" in the upper left-hand
corner of the bitmap graphic and other code point numbers, and at each code point’s 16x16
pixel area inside its 32x32 pixel grid area. Every other artifact in the final graphics file
outside these areas is ignored.

If a new version of Unicode adds glyphs to a page that were previously unassigned, be sure
to remove the newly-assigned code points from the unassigned.hex file because the code
point is no longer unassigned.

Step 3: Convert the edited .bmp file back into .hex format:
unibmp2hex < uni2C.bmp > uni2C.hex

Note that the conversion from a bitmap image to a .hex file can’t distinguish between a
legitimate single- or double-width space character and a code point that does not have an
assigned value. Therefore, space glyphs are separately contained in the spaces.hex file.

Step 4: Merge the results with the original unifont.hex file. This requires several sub-steps:
e Edit the original unifont.hex file and delete the lines that begin with "2C".

e Insert the uni2C.hex file into unifont.hex, either with a text editor such as emacs or
vi, or with a GNU/Linux command such as:

sort uni2C.hex unifont.hex > new-unifont.hex
This second option (using sort) is preferred, because unidup (in Step 5) might miss
duplicate code points if your final result isn’t in proper order.
Step 5: Make sure there are no duplicates with unidup:
unidup < unifont.hex
or
unidup < new-unifont.hex

depending on the name of your final font file. If there is no output, your modified font
contains no duplicates.

Chapter 2: Tutorial 5

This editing is best done on an input .hex file, such as unifont-base.hex.
Step 6: Create the new bitmapped version of the font. In the font/ directory, type
make hex

Step 7: Check the compiled font for duplicates. Change to the font/compiled/ directory
and run

unidup < mynewfontfile.hex
for whatever font file you created.
Step 8: If there are duplicates, remove them in the font/ directory and go back to Step 5.

Step 9: Create the new TrueType version of the font and all other bitmapped versions.
From the font/ directory, type

make distclean && make

Then be prepared to wait a long time unless you are using a computer with plenty of RAM
and CPU horsepower. Your computer should have at least 256 Megabytes of virtual memory
(RAM), and at least 250 Megabytes of free disk space.

To only create a BDF font, in the font/ directory just type
make bdf

To only create a BDF and PCF font, in the font/ directory type
make pcf

Creating a BDF font is the first step in creating a PCF font (not counting generating the
compiled master ".hex" input file). BDF fonts can be created just with the tools in this
package. PCF fonts are created by running bdftopcf on the BDF font. TrueType fonts
require FontForge.

The Unifont package also includes two new programs for working with Portable Network
Graphics (PNG) files instead of BMP files. These utilities are unihex2png and unipng2hex.
They work in a similar manner to the corresponding programs unihex2bmp and unibmp2hex,
respectively.

To use unihex2png instead of unihex2bmp, continuing the example of the Coptic script in
the U+2Cxx range, type:
unihex2png -p 2C -i unifont.hex -o uni2C.png

Note that with unihex2bmp specifying input and output files is optional, while with
unihex2png at least the PNG filename must be specified explicitly. More specifically,
unihex2png will read a .hex file format input from STDIN if no "-i" argument is specified,
but the name of the binary PNG file must always be specified with the "-o" option.

Then edit the resulting PNG file to your heart’s content. When done, convert the file back
into a unifont.hex format file. In this example, type:

unipng2hex -i uni2C.png -o uni2C.hex

Similar to unihex2png, the binary PNG file must be specified with "-i" but the .hex format
file will be written to STDOUT if the "-o" option is omitted.

Finally, merge your changes in with your main .hex font file as described previously in this
section.

Chapter 2: Tutorial 6

2.5 Using Hexdraw

Roman Czyborra’s original utility to edit glyphs is the hexdraw Perl script. Using the same
script as in the previous chapter, Coptic, here are the steps for modifying unifont.hex
using hexdraw.
First, realize that Unifont has tens of thousands of glyphs (characters, using the term
character loosely). In this example, out of the tens of thousands of glyphs, we want to
modify the range U+2C80..U+2CFF (only 128 glyphs).
The range U+2C80..U+2CFF could be extracted from unifont.hex by using the egrep
utility to look for lines beginning with "2C8" through "2CF", or that range could be
isolated by copying unifont.hex into another file, and deleting all lines except the desired
range.
The following steps will probably minimize typographical errors, but they aren’t the only
way.

1. "Grep" the desired block of 256 glyphs (using the grep utility) and convert this into a
text representation for editing.
Edit the block with a text editor, such as emacs or vi.
Convert the edited text file back into .hex format.
Delete the edited block range from the original font file.

Merge the two .hex files into one file.

AR AN

Check for duplicates with unidup.

7. Generate new fonts as described in the "Using Graphical Tools" section above.

Step 1: Extract the desired block with grep:
grep ""2C" unifont.hex | hexdraw > uni2C.txt
Step 2: Edit uni2C.txt with a text editor.
Step 3: Convert the text file back into .hex format:
hexdraw < uni2C.txt > uni2C.hex
Step 4: Delete the lines in the original unifont.hex file that begin with "2C".
Step 5: Merge the two files:
sort unifont.hex uni2C.hex > new-unifont.hex
or use Roman’s hexmerge utility:
hexmerge unifont.hex uni2C.hex > new-unifont.hex
Step 6: Check for duplicates:
unidup < new-unifont.hex
Of course, remove any reported duplicates.
Step 7: Build the font as in the "Using Graphical Tools" section above. This can be as
simple as typing
make
in the font/ directory.

I (Paul Hardy) had only used hexdraw in the very beginning of my work on Unifont. Once
I got my graphics programs working, I ignored it for months. Then I wanted to go through

Chapter 2: Tutorial 7

all of the Yi Syllables and Yi Radicals — over 1000 glyphs — to fine-tune their horizontal
alignment after I drew them. hexdraw turned out to be the perfect tool for this. By printing
hyphens ("-") as place holders where a pixel is off, it allowed me to verify space to the left
and right of each character. I later used hexdraw for similar fine-tuning of spacing on
Hangul and other glyphs. It is ideal for the task.

2.6 Checking Coverage

There should never be duplicates in a .hex file. If there are, remove them before the .hex
font is turned into a BDF or other font file. The recommendations above include making
liberal use of unidup to avoid such a situation.

The unipagecount program will print a hexadecimal number of code points that have
coverage within each 256 code point block. The hexadecimal number will therefore range
from 0 (no coverage) to 100 (= 256 decimal; full coverage). If a number is ever more than
100 hexadecimal, there’s an extra character (glyph) for that page.

To further look at the coverage within just one 256 code point page (using page 2C, con-
taining Coptic, as our example) use
unipagecount -p2C < unifont.hex

Note that the "page number" can use upper- or lower-case letters: -p2C or -p2c will both
work. That will print a 16 x 16 grid of U+2C00..U+2CFF. Of course, without placeholder
glyphs for the unassigned code points from unassigned.hex in the U+2C00..U+2CFF range,
unipagecount can give a lower number than the true coverage.

Using the -1 flag with unipagecount will produce an HTML table with links to corre-
sponding graphics images. You can get an idea of how this works in the font/compiled/
directory after running make; the index.html file in that directory will have a table with
links to the 256 glyph maps in the font/compiled/bmp/ subdirectory.

With unipagecount, the background color of the cells will range from red (for 0% complete
in that 256 code point block) to orange (a little coverage) to yellow (more coverage) to green
(complete coverage). If a cell looks light red or pink, the corresponding code page probably
has duplicate characters. Verify that with

sort unifont.hex | unidup
(substituting the name of your .hex file for unifont.hex).

To see the coverage of each Unicode script, copy the file font/coverage.dat into the same
directory as the unifont.hex file you're examining. Then run

unicoverage < unifont.hex > coverage.out

This will give you all the scripts within the Unicode Basic Multilingual Plane, in order,
with a percentage (0.0% through 100.0%) of each script’s coverage. Note that to get the
true coverage of assigned code points, you’ll have to merge unassigned.hex with the rest
of unifont.hex if not done by default in your setup.

Using the .hex files in font/plane00/, you can create a font with all available glyphs with
sort font/plane00/*.hex >unifont-whole.hex

and run unicoverage using the resulting unifont-whole.hex file.

Chapter 2: Tutorial 8

2.7 Custom Builds

The font can be built from within the font/ directory by simply typing

make
From the top-level directory (one level above the font/ directory), typing

make BUILDFONT=1
will also build the font. The font is not built by default by typing make from the top-level
directory, because a pre-built version already exists in the font/precompiled/ directory.
Font files are architecture-independent, so the only reason to build the font is if you modify
its composition.
By default, source glyphs are read from the font/plane00/ directory. Glyphs for unassigned
code points are built into the font by default, but glyphs for Private Use Area code points
are not built into the font.
All of the .hex file names can be replaced selectively on the make command line to over-

ride their default values. Their locations are relative to the font/ directory. The list of
component hex file variables is:

UNIFONTBASE
The bulk of Unifont scripts
CJK Most of the CJK Ideographs

HANGUL Hangul Syllables block
SPACES Space glyphs, single- and double-width

UNASSIGNED
Glyphs for unassigned code points

PUA Glyphs for the Private Use Area
So, for example, to build a font that includes four-digit hexadecimal code point glyphs (as
white digits on a black background) for the Private Use Area, type
make PUA="planeOO/pua.hex"
because those glyphs reside in the font/plane00/pua.hex file.
To build a font that includes your own special PUA glyphs, type
make PUA="my-cool-PUA.hex"
or whatever the name of your PUA glyph .hex file is named.
To create a build that includes the supplied PUA glyphs but not the unassigned code point
glyphs, type
make PUA="planeOO/pua.hex" UNASSIGNED=""

If you create a custom font build of your own in one gigantic file, you can build with just
this file by declaring all the ordinary files to be null:

make UNIFONTBASE="mycustomfont.hex" \

CJK="" HANGUL="" UNASSIGNED="" PUA=""

Note that this command did not include an override for the glyphs for spaces contained
in the font/plane00/spaces.hex file; that is, the variable SPACES was not redefined on

Chapter 2: Tutorial 9

the command line. You could also pass the argument SPACES="", but just be aware that
those spaces glyphs are in a separate file for a reason. When graphical (".bmp") glyph
files are converted back into hex string (".hex") format, the unibmp2hex utility doesn’t
know if a blank glyph area is a space glyph or not, so it doesn’t encode anything. The
font/plane00/spaces.hex file contains glyphs that are strings of Os, with length depending
on whether the space is nominally a single- or double-width space. (Unifont does not
distinguish between finer spacing used in traditional typesetting, such as a thin space, en
space, em space, or quad space; all spaces are either 8 pixels wide or 16 pixels wide.)

2.8 Viewing a Unifont File Interactively

The unifont-viewer Perl script uses the wxWidgets Perl library to present a dynamic
graphical representation of a Unifont hex file. This is a convenient way to scan quickly
through a complete Unifont hex file. It is ideal for scanning through a Unifont hex source
file after you have made changes.

Use unifont-viewer to open any Unifont hex file, whether in the Basic Multilingual Plane
up to the maximum Unicode code point of U+10FFFF. The font is displayed graphically in
sections of 16-by-16 glyph grids (256 glyphs—a "page" in Unifont lingo). The page numbers
(the upper portion of the hexadecimal code point range) appear in a list along the left-hand
side. Only page ranges that are present in the Unifont hex file are listed.

When unifont-viewer loads a hex file, it begins by displaying the first "page" range in
that file.

2.9 Seeing the Big Picture (Literally!)

The GNU Unifont 6.3 release introduced a new program, unifontpic. This produces a chart
of all the Basic Multilingual Plane glyphs in Unifont. By default the chart is arranged as a
256-by-256 glyph table. Specifying the -1 option produces a chart that is 16 glyphs wide
by 4,096 glyphs long. See unifontpic(1) for more information.

The "long" version, created with unifontpic -1, only produces 16 glyphs per row. This is
more useful for scrolling through on a computer screen.

GIMP, the GNU Image Manipulation Program, will properly display the resulting long
.bmp file (at least under GNOME), but not all graphics utilities can. The output file is
over 65,536 pixel rows tall, which causes problems with some graphics programs.

To generate a chart with all your glyphs in one giant unifont.hex file, type the command
unifontpic < unifont.hex > unifont.bmp

The output is a monochrome Bitmap Graphics Format (.bmp) file. If you prefer PNG files,
use your favorite graphics program or conversion program to convert the BMP file to a
PNG file.

This utility is especially useful if you're customizing the font, for example if adding your
own Private Use Area glyphs.

The default 256-by-256 code point chart will render satisfactorily on a sheet of paper ap-
proximately 3 feet by 3 feet (1 meter by 1 meter) at 120 dots per inch. Thus the square
format is suitable for printing.

Chapter 2: Tutorial 10

2.10 Combining Circles

The earliest versions of Unifont (before the 5.1 release) used glyphs that showed dashed
circles for combining characters. This is how the glyphs appear in The Unicode Standard
code charts. In version 5.1, Paul Hardy was able to get combining characters to appear
superimposed correctly in the TrueType version of the font. (There are no plans to try
to get combining characters to work in a BDF or PCF version owing to the limitations of
those bitmapped font formats.)

With combining characters working in the TrueType font, Paul Hardy created variations
of Unifont with and without combining circles, the idea being that the version without
combining circles would be used to create the TrueType font. The variation with combining
circles was kept for reference.

Unifont Version 6.2 simplified the build to produce only one font variation, without com-
bining circles.

Unifont Version 6.3 introduced a new utility, unigencircles, to superimpose combining
circles over glyphs with code points in a combining.txt file.

The latest Unifont release contains a parallel set of font files named unifont_sample. *.
These "Unifont Sample" font files contain glyphs with combining circles where appropriate.
The "Unifont Sample" font is therefore not intended for general-purpose writing, but only
for illustrating each individual glyph as represented in The Unicode Standard.

To run unigencircles, start with the file font/ttfsrc/combining.txt and type a com-
mand of this form:

unigencircles combining.txt < unifont.hex > unifont-circles.hex

where unifont.hex is a single file containing all the glyphs you wish to render. You could
create such a file from the font/ directory with the command

sort plane0O/*.hex >unifont.hex

Because the output is another .hex file, you can use all Unifont utilities with this resulting
file just as you would with the .hex files in font/plane00/.

If you want to build a font from this generated unifont.hex file, you could type
make UNIFONTBASE="unifont-circles.hex" CJK="" HANGUL="" \

UNASSIGNED="" PUA=""

as discussed above. In this case, if you included font/plane00/spaces.hex in the
unifont.hex input file, you should also set SPACES="" on the command line so that you
only read in your final custom unifont-circles.hex file.

2.11 Installing Fonts on GNU /Linux

The original standard font format of Unifont was a BDF font. The newer PCF font format
loads much faster when a program begins, and so is preferable for installations using the X
Window System and similar environments.

Compress PCF fonts using
gzip -9 fontname.pcf

Copy the resulting fontname.pcf.gz file to /usr/share/fonts/X11/misc/ or place in a
local font directory if your windowing software supports that (for example, ~/.fonts/).

Chapter 2: Tutorial 11

Copy TrueType fonts to /usr/share/fonts/truetype/ uncompressed or place in your local
font directory. Note: on some versions of Unix, such as Solaris, the name of the TrueType
directory might be TrueType and might be under /usr/share/fonts/X11/ — examine the
system fonts directories, then modify the font make install rule accordingly.

On most flavors of GNU/Linux with the latest xset utility (including the latest Debian
and Red Hat releases), the following command should allow you to start using the font
immediately:

xset fp rehash

The safest way to make sure the system knows about the new fonts will be to restart the
X Window System or even reboot.

2.12 Creating a Brand New Font

The original tools will only produce glyphs that are 16 pixels tall, and either 8 or 16 pixels
wide. The utilities unihex2png, unipng2hex, hexdraw, and hex2bdf now also support
glyph heights of 24 and 32 pixels, and glyph widths of 8, 16, 24, and 32 pixels, but this is
not fully tested. These new dimensions are currently available for experimental use. See the
respective sections for each of these programs in the Reference chapter of this document,
or their respective man pages.

To create a brand new font (or even to add a new script to Unifont in the future), plan out
the basic dimensions of the characters:
e How far above the lowest pixel will the baseline appear (in other words, how many
rows are necessary for descenders such as in the glyphs for ‘g’, ‘q’, and ‘y’)?
e How many pixels must be empty on top and bottom for accents (in other words, what
will the height of capital letters be)?
e Must glyphs be centered, left-aligned, or right-aligned?
e For a Latin font, what will the "x-height" be (the height of a lower-case "x" and related
letters, such as "n" and "r")?

Consistent capital heights, x-heights, descender depths, and centering will produce a better
looking font. Look over the entire script and plan out a template grid that is consistent for
the entire script. Then use that template for each glyph you draw for the script.

Unifont characters for the most part leave the left-most or right-most column of pixels blank
if possible (consistent within each script) for left-to-right scripts. Centering is done around
the fourth pixel (if a glyph is eight pixels wide) or around the eighth pixel (if a glyph is 16
pixels wide).

Experimenting and (above all) having fun with these utilities is the best way to learn.

2.13 Updates to Unicode

If a currently unassigned code point is assigned to a character in the future, the font can
be updated as follows:
1. Delete the code point’s entry from font/plane00/unassigned.hex, as that code point
will no longer be unassigned.
2. Determine which existing .hex file should contain the newly defined character (examine
the files to see which one contains other glyphs in the script.

Chapter 2: Tutorial 12

e unifont-base.hex contains most scripts

e wqy.hex contains most CJK ideographs; its name pays homage to the Wen Quan
Yi font, the source of almost all of its glyphs

e hangul-syllables.hex contains the Hangul Syllables block (U+AC00..U+D7A3);
this should never have new code points added as it covers the fixed range of the
Unicode Hangul Syllables block

e spaces.hex contains the list of single- and double-width spaces
If in doubt (for example, if a new script is added to Unicode and you're not sure which
.hex file to augment), add the new glyphs to unifont-base.hex.
3. Update the appropriate .hex file.

4. Consider if font/coverage.dat has to be updated. Follow its existing format to insert
a new script, being sure to change any previously unassigned ranges before or after the
newly added script.

5. Make a new .hex version of the font, and verify that you didn’t introduce any duplicates.

6. Run unipagecount and/or unicoverage as described previously to verify that you
have not mistakenly deleted any existing characters.

Enjoy!

Chapter 3: Reference 13

3 Reference

3.1 bdfimplode

3.1.1 bdfimplode NAME
bdfimplode — Convert a BDF font into GNU Unifont .hex format

3.1.2 bdfimplode SYNOPSIS
bdfimplode < input-font.bdf > output-font.hex

3.1.3 bdfimplode DESCRIPTION

bdfimplode reads a BDF font from STDOUT and writes GNU Unifont .hex conversion of
the font to STDOUT.

3.1.4 bdfimplode FILES

* bdf font files

3.1.5 bdfimplode SEE ALSO

hex2bdf(1), hex2sfd(1), hexbraille(1), hexdraw(1l), hexkinya(l), hexmerge(1), jo-
hab2ucs2(1), unibdf2hex(1), unibmp2hex(1), unicoverage(1l), unidup(1l), unifont(5),
unifont-viewer(1), unifontchojung(1), unifontksx(1), unifontpic(1), unigencircles(1), uni-
genwidth(1), unihex2bmp(1), unihex2png(1), unihexfill(1), unihexgen(1), unipagecount(1),
unipng2hex(1)

3.1.6 bdfimplode AUTHOR

bdfimplode was written by Roman Czyborra.

3.1.7 bdfimplode LICENSE
bdfimplode is Copyright (©) 1998 Roman Czyborra.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

3.1.8 bdfimplode BUGS

bdfimplode was written to read a BDF file created by the hex2bdf script. It will not properly
handle other BDF files with differing bounding boxes.

3.2 hex2bdf

3.2.1 hex2bdf NAME
hex2bdf — Convert a GNU Unifont .hex file into a BDF font

3.2.2 hex2bdf SYNOPSIS
hex2bdf < input-font.hex > output-font.bdf

Chapter 3: Reference 14

3.2.3 hex2bdf DESCRIPTION
hex2bdf reads a sorted GNU Unifont .hex file (sorted with the Unix sort utility) from
STDIN and writes a BDF version of the font to STDOUT.

3.2.4 hex2bdf OPTIONS

-f "font-name"
Specify the target font name. If omitted, the default font name "Unifont" is
assigned.

-v "font-version"
Specify the target font version. If omitted, the default version "1.0" is assigned.

-c "font-copyright"
Specify the target font copyright information. The default is the null string.

-r <pixel-rows>
Specify how many pixel rows tall a glyph is. The default is the traditional
Unifont 16 rows of pixels. This is an addition to support unihex2png(1) and
unipng2hex (1), which allow designing glyphs that are 16, 24, or 32 pixel rows
tall.

3.2.5 hex2bdf EXAMPLE

Sample usage:
hex2bdf -f "Unifont" -¢ "(C) 2013..." unifont.hex > unifont.bdf

3.2.6 hex2bdf FILES
* hex GNU Unifont font files

3.2.7 hex2bdf SEE ALSO

bdfimplode(1), hex2sfd(1), hexbraille(1), hexdraw(1), hexkinya(1), hexmerge(1),
johab2ucs2(1), unibdf2hex(1), unibmp2hex(1), unicoverage(1l), unidup(l), unifont(5),
unifont-viewer(1), unifontchojung(1), unifontksx(1), unifontpic(1), unigencircles(1), uni-
genwidth(1), unihex2bmp(1), unihex2png(1), unihexfill(1), unihexgen(1), unipagecount(1),
unipng2hex(1)

3.2.8 hex2bdf AUTHOR
hex2bdf was written by Roman Czyborra.

3.2.9 hex2bdf LICENSE

hex2bdf is Copyright © 1998 Roman Czyborra.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

3.2.10 hex2bdf BUGS

No known bugs exist. Support for glyph heights other than 16 pixels is brand new and has
not been extensively tested.

Chapter 3: Reference 15

3.3 hex2sfd

3.3.1 hex2sfd NAME
hex2sfd — Convert a GNU Unifont .hex file into a FontForge .sfd format

3.3.2 hex2sfd SYNOPSIS
hex2sfd < input-font.hex > output-font.sfd

3.3.3 hex2sfd DESCRIPTION

hex2sfd reads a GNU Unifont .hex file from STDIN and writes an outline font representa-
tion in FontForge Spline Font Database (.sfd) format. The resulting .sfd file can then be
converted by FontForge into a TrueType .ttf font.

3.3.4 hex2sfd FILES
GNU Unifont .hex font files for input, FontForge .sfd font files for output

3.3.5 hex2sfd SEE ALSO

bdfimplode(1), hex2bdf(1), hexbraille(1), hexdraw(1), hexkinya(1), hexmerge(1),
johab2ucs2(1), unibdf2hex(1), unibmp2hex(1), unicoverage(1l), unidup(l), unifont(5),
unifont-viewer(1), unifontchojung(1), unifontksx(1), unifontpic(1), unigencircles(1), uni-
genwidth(1), unihex2bmp(1), unihex2png(1), unihexfill(1), unihexgen(1), unipagecount(1),
unipng2hex(1)

3.3.6 hex2sfd AUTHOR

hex2sfd was written by Luis Alejandro Gonzalez Miranda in 2005, with modifications by
Paul Hardy in 2008.

3.3.7 hex2sfd LICENSE
hex2sfd is Copyright (©) 2005 Luis Alejandro Gonzalez Miranda, (¢) 2008 Paul Hardy.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

3.3.8 hex2sfd BUGS

No known bugs exist.

3.4 hexbraille

3.4.1 hexbraille NAME
hexbraille — Algorithmically generate the Unicode Braille range (U+28xx)

3.4.2 hexbraille SYNOPSIS

hexbraille > output-font.hex

Chapter 3: Reference 16

3.4.3 hexbraille DESCRIPTION

hexbraille generates a GNU Unifont .hex format file (written on stdout) containing the
Braille dot patterns in the Unicode range U+2800..U+28FF.

3.4.4 hexbraille FILES
braille.hex output font files

3.4.5 hexbraille SEE ALSO

bdfimplode(1), hex2bdf(1), hex2sfd(1), hexdraw(1l), hexkinya(1l), hexmerge(1),
johab2ucs2(1), unibdf2hex(1), unibmp2hex(1), unicoverage(1l), unidup(l), unifont(5),
unifont-viewer(1), unifontchojung(1), unifontksx(1), unifontpic(1), unigencircles(1), uni-
genwidth(1), unihex2bmp(1), unihex2png(1), unihexfill(1), unihexgen(1), unipagecount(1),
unipng2hex(1)

3.4.6 hexbraille AUTHOR

hexbraille was written by Roman Czyborra, who named this script "bra